
WHITE PAPER

Build or Buy?
Key Considerations in Implementing
Software Usage Analytics

WHITE PAPER

 | 2

Table of Contents
What to Know Before Building Software Usage Analytics In-House 3

Why Software Developers Need Software Usage Analytics 3

Key Questions Software Usage Analytics Can Answer 3

Build vs. Buy: Main Planning Considerations ... 4

Upfront Planning ... 5

Client Instrumentation and Telemetry .. 6

Data Collection and Management ... 7

Data Visualization and Reporting .. 8

Data Protection and Privacy Considerations ...10

Deploying a Robust, Well-performing Solution Environment11

Limitations of Web Analytics ...12

Usage Intelligence: The Better Alternative ...12

WHITE PAPER

 | 3

What to Know Before Building Software
Usage Analytics In-House
Development teams are challenged to build increasingly
competitive products, but they must overcome difficult tradeoffs
to do so. They must prioritize a mounting backlog of new feature
requests, balance innovation with maintenance, manage growing
technical debt, improve quality and usability, accelerate delivery,
and reduce cost—all at the same time.

Given limited resources, developers must optimize their
investments to reflect true customer needs—while also
anticipating customers’ emerging requirements. Suboptimal
product roadmap decisions can be disastrous.

To manage these challenges, software companies need
comprehensive, accurate, timely, and actionable information
about how users engage with their software.

To get this information, they are increasingly turning to software
usage analytics solutions that:

 • Instrument software applications to capture meaningful data
about how customers and prospects are using them

 • Help analyze engagement data to gain actionable insights
on how to prioritize product development to deliver better
products, increase customer adoption and retention,
and grow sales

As developers contemplate usage analytics, one early question
they often face is: should we build or buy? This guide sheds light
on this decision from the standpoint of the development and
product management teams. It assesses issues ranging from
time-to-market to the direct and indirect costs of development
and ongoing operation. Finally, it considers an alternative to
home-built systems.

Why Software Developers Need Software
Usage Analytics
By offering fact-based insights, an effective software usage
analytics solution can help developers make far better day-to-day
and strategic decisions. It can help them quickly surface emerging
problems that are interfering with adoption, such as UI/UX issues
or platform-specific bugs. It can also help developers uncover new
customer needs, assess how quickly trends are taking hold, and
align product roadmaps with customer realities.

In recent years, software companies have pursued diverse
strategies to answer questions like these. These have included
web analytics tools such as Google Analytics and Microsoft
App Insights (see “Limitations of Web Analytics” on page 12);
qualitative sales/channel feedback; helpdesk support calls;
surveys; and measurements of software updates or downloads.

Each of these options made sense at the time,
but each has serious shortcomings. For instance:

 • Helpdesk calls capture an unrepresentative slice of user
experience, e.g. you tend to hear about

 • showstopper problems, not successful workflows or features

 • Survey respondents are invariably self-selected

 • Sales/channel feedback tends to be anecdotal

 • Download counts deliver crude top-level information, offering
no insight into why customers did or didn’t upgrade, or how
they use the software

In all these cases, developers see just a piece of the picture. It’s
almost impossible to combine these disparate fragments into a
coherent whole—so it’s hard to rely on them for decision-making.

WHITE PAPER

 | 4

Build vs. Buy: Main Planning Considerations
Software usage analytics systems are complex. As software
companies know better than anyone, building, maintaining, and
operating complex software is expensive and time-consuming.
It requires specialized resources and technical expertise at each
stage of the development lifecycle, from requirements through
testing, deployment, and maintenance. It requires extensive
collaboration within and often beyond the organization. Moreover,
these investments may come at the expense of responding to
feature requests or new opportunities.

Software usage analytics systems demand careful attention
to data, networking, access, security, customer privacy, and
legal compliance. They require substantial client, server, and
communications infrastructure. Even if only instrumenting a few
thousand installations, they must scale to capture and manage
massive amounts of data—and provide reliable real-time reports
and visualizations for decision-making, no matter how much data
must be processed.

While some elements of a home-grown software usage analytics
system can be based on third-party libraries and frameworks,
introducing these into your development environment can add
long-term cost, complexity, and maintenance challenges.
It might require you to retain skills unrelated to your core
mission and weaken your focus on building your product.

Development teams that create their own custom in-house
solutions must address all these issues. The following sections
drill down into key aspects of an effective software usage
analytics system, and the effort required to build rather than
purchase it.

Key Questions Software Usage Analytics Can Answer

 • Which feature sets do users actually work with?

 • Which features are attracting growing usage,
and deserve more investment?

 • Which features should be grouped for maximum
ease of use?

 • Which legacy features can be safely abandoned?

 • Where are users encountering performance or usability
problems?

 • Are new software reliability issues emerging—and if so,
where and on what platforms?

 • What trial user behaviors lead to purchase or
abandonment?

 • What runtime environments should we target?

WHITE PAPER

 | 5

Upfront Planning
Like any complex software project, building a software usage
analytics system requires extensive upfront planning by
senior-level product managers, engineering leaders, IT leaders,

and others throughout the organization. Table 1 describes
some of the issues planners must address:

Task Discussion

Defining the metrics and
metadata you need to collect

Significant collaboration is needed among company stakeholders and data users to ensure that you
capture the right data to support actionable reports required by various team members (e.g., machine
information, install and runtime statistics, granular and feature usage data) without gathering too
much “noise” (data you’ll never use).

Determining when and how
to collect telemetry within the
runtime process

Developers must instrument the application to collect metrics around user actions—events that
actually matter. They must also determine which metrics to collect for every event.

Specifying telemetry transmission
details

Development teams must design log formats, communication protocols, processes, synchronization
schedules, and caching and handling for offline usage.

Specifying server and database
requirements, including security

If developers plan to host their own servers and databases, they must plan for hardware
infrastructure that can scale, software, backup, firewalls, anti- malware, and other security.
If they intend to use cloud services, they must evaluate what type of servers and services will
be required, predict usage costs, and plan for scalability and security.

Specifying requirements for
dashboards, reporting, and
visualization

As discussed in the Data Visualization and Reporting section below, decision-makers
and technical professionals must work together to clarify:

 • What questions need to be answered

 • Who will have access to what information

 • How the system will support ad hoc exploration and discovery

Defining integration requirements

Software usage analytics delivers the most value when it is integrated with third-party
systems used in other areas of business operations. These can typically include:

 • Product download and auto-update systems

 • CRM and Licensing systems

 • Marketing Automation

 • Other business intelligence systems

This can only be done if the system can export data in a format usable by these systems, or sync
with them via well-defined APIs. In new systems developed from scratch, such interfaces may have
to be built.

Table 1. Upfront Planning Issues.

WHITE PAPER

 | 6

Client Instrumentation and Telemetry
Instrumenting clients non-disruptively and establishing reliable,
secure telemetry between the client and server are non-trivial
development tasks.

For example, to establish unique user profiles and track usage
trends reliably for each installation, and link installation profiles
to download sources or marketing campaigns, developers
must automatically generate machine fingerprints and user
installation IDs. So, too, most development organizations will want

convenient and reliable opt-in/opt-out mechanisms. Development
organizations that build from scratch must design, create, test,
and integrate mechanisms to handle a wide variety of tasks.
For these reasons, home-grown telemetry solutions often require
months of development time, with extensive testing and quality
assurance. Table 2 reviews some of the tasks involved: tasks that
help explain why home-grown telemetry solutions often require
months of development time.

Table 2. Client instrumentation and telemetry issues.

Task Discussion

Building a secure and lightweight
client- server communication
protocol with embedded security
and encryption of sensitive data

Client-server communication should be reliable and lightweight, so it does not affect user experience.
For sensitive data collection where developers want to favor security over ubiquitous coverage, they
may wish to require HTTPS client-server communication. In anonymous and less-sensitive industries,
they may want to permit a fallback to HTTP, tracking installations behind firewalls and gateway filters
that may block HTTPS.

Extending the client-server
protocol to handle proxies,
firewalls, web filtering gateways,
dark networks, and other
network configurations

As organizations seek to strengthen security, they are introducing more sophisticated means of
network traffic control. Software telemetry systems must continually account for these environments
in order to capture comprehensive data.

Building a method to generate
unique customer IDs to track
usage by user/ install even when
tracking in anonymous mode

Developers need to provide support for reinstall, upgrade, multiple installs per machine, and other
events. They must also link events to individual customer IDs in order to build the sequenced user
profile histories that are critical to understanding how individuals use software.

Building logic to aggregate,
compress, and optimize sending
of telemetry data

Developers must invest significant time and effort in minimizing the frequency and size of call-home
traffic, to ensure that telemetry doesn’t interfere with client or network performance.

Building logic to handle
communication errors such
as “network not available”

To prevent data from being lost to communication errors or when users go offline, developers must
implement intelligent local caching to transparently and securely store data locally until it can be
forwarded to a cloud server.

Extending support to
new platforms

When developers introduce products on new platforms, they must often repeat many of the
development tasks described above.

WHITE PAPER

 | 7

Data Collection and Management
A successful software usage analytics system must efficiently
collect and process massive datasets, making them available
for advanced reporting and analysis. Timing information
collection and providing adequate data storage and
management can be daunting.

Development organizations with less data-intensive products
often possess basic data management skills. For example,
their developers may well have experience designing relational
database schemas using SQL queries. But these basic skills aren’t
enough to cope with usage analytics applications that quickly

generate terabytes of data, even if they are only collecting from
a few thousand installations. So, for example, simple relational
databases such as MySQL might fail to perform when you attempt
to generate scalable real-time reports—requiring the use of
alternative database design methodologies and visualization
frameworks specialized for handling big data. These may be
out of scope for your software product’s development team.
Table 3 identifies key issues involved in server- side data
collection and management.

Table 3. Data collection and management issues.

Task Discussion

Acquiring database and server
hardware and software licenses

If you manage data locally, you’ll need to provide or purchase licenses for the relevant databases and
underlying server operating systems, unless you subscribe to a Platform-as-a-Service (PaaS) solution.

Building a database schema This involves transforming the telemetry event types and parameters you’ve defined into a working
database schema that can be queried efficiently for reporting.

Providing flexibility in what can
be tracked

Some solutions limit flexibility in choosing what to track. Tracking events you don’t care about
can increase both out-of-pocket costs and operational complexity, and make client-server
communications heavier than required. However, providing granular capabilities may involve
additional work.

Supporting remote changes to
tracking “on the fly” without
requiring client updates

Home-built systems are often static: they always track the same events. To change what you track,
you must change the client code and distribute a new build.A better alternative is to provide remote
on/off control over tracking specific elements, ideally via a dashboard that non-technical users
can operate. Companies that build their own systems should plan on coding and maintaining this
additional functionality.

Capturing application-specific
data (e.g., user-specified
configuration settings;
application state when an event
occurs; user feedback sent via
in-app messaging

These valuable capabilities are difficult to build on your own, and are not provided through commonly-
used web analytics systems such as Google Analytics or Microsoft App Insights.

Scaling data storage
As discussed elsewhere, software usage analytics databases grow rapidly. Additional local or
cloud resources may need to be acquired and managed; software companies may need to
change underlying platforms to accommodate requirements for growth and performance.

Administering the data collection
service and database system on
a day-to-day basis

Like any web service or large database system, custom-built software usage analytics databases
require ongoing monitoring, maintenance, and updates.

WHITE PAPER

 | 8

Data Visualization and Reporting
Your goal is not merely to capture and display data: it is to get
timely, accurate answers you can use. As you may know from
experience, if you require non-technical colleagues to write
SQL queries, manually join datasets, or build complex Excel
PivotTables, either your system will fail or you’ll be overburdened
with demands for support. Therefore, reporting should be simple
and intuitive for non-experts.

Since software usage analytics will be valuable to a wide
spectrum of executives, managers, and developers, systems
must incorporate role-based reporting that is easy to manage.

Reporting should also operate in real-time, so technical and
business decision-makers can act immediately. For example,
if a new bug is preventing a subset of users from successfully
upgrading, you need to know right now, so you can fix it
immediately, before it affects more of your user base and
generates massive numbers of support calls. So, too, imagine that
days before a major product release, an executive team discovers
a potentially significant issue affecting a subset of its user base.
To choose the best course of action, decision- makers need
immediate, reliable information about how many people would be
affected if the release moves forward.

With huge datasets generated by software usage analytics,
reporting can be painfully slow unless the analytics engine as well
as supporting infrastructure, database, and queries have all been
built for the purpose and carefully optimized.

Interactive visualization is often the most effective way to
communicate software usage analytics insights. Many software
organizations, recognizing the value of a powerful and flexible
visualization dashboard, envision building an in-house solution
based on a generic visualization framework.

Development organizations often underestimate the staff
resources required to manage reporting and visualization,
especially if these are not organizational core competencies.
Moreover, third-party visualization tools typically assume your
backend has enough resources to handle the query load.

Most important, a visualization framework merely lets you convert
raw data into attractive charts. By itself, it doesn’t add intelligence
or context, or answer the questions that matter. For that,
development teams need actionable interactive reports designed
to answer specific questions. To build such reports from scratch,
developers and data analysts must collaborate to understand
context, choose metrics, correlate raw data, and build reports
that help others make sense of it.

Building such actionable reports will require time, and knowledge
of the framework. It will also require deep knowledge of what each
potential user needs to know, both now and in the future, as they
start asking more advanced BI questions. Some of the key issues
associated with implementing visualization are listed in Table 4.

WHITE PAPER

 | 9

Table 4. Data visualization and reporting issues.

Task Discussion

Implementing a modern
dashboard that is customizable
for each user persona needing
access to data

Unless every person in your organization gets the data they need efficiently without a steep
learning curve, they will probably end up avoiding your analytics framework, and fail to benefit
from it.

Purchasing and implementing
a visualization framework,
and mastering its API

Developers must choose a visualization framework, master its API, and maintain those skills as
long as they use it. Additional licensing, server, and administration costs are likely associated
with the preferred toolkit. This toolkit must also be kept updated to support new browsers and
JavaScript frameworks.

Designing high-performance
backend queries

Development organizations sometimes underestimate the effort required to optimize backend
queries so they are fast enough to scale while supporting live visualization in a timely manner that
is practical for day-to-day use.

Implementing reports, including
drill-down functionality

Drilldowns and related features help business users explore data in depth, and answer
new questions that aren’t already built into their reports, without requiring developers
to create new reports.

Implementing data aggregation
logic capable of identifying
trends and patterns

This logic is required to make correlations and counts for dashboards and reports.

Implement data
export capabilities

This is essential to integrate usage intelligence data with third-party tools to apply context
and provide global business value.

WHITE PAPER

 | 10

Data Protection and Privacy Considerations
Development organizations know data protection and privacy
are now of critical importance: failures can expose the business
to extensive legal and reputational damage. Experience with
usage analytics makes it easier to avoid trouble: experience with

the technical aspects of building these systems, testing and
deploying them, and operating them with real customers around
the world. Table 5 outlines key issues associated with data
security and privacy.

Task Discussion

Providing for data security
and access control at all levels

Software companies that build their own usage analytics systems must protect customer
and proprietary data at the client, in transit, at the server, and in use by company
personnel. This often involves access management and encryption.

Offering appropriate notice
and opt-in/opt-out options

Software companies that build their own usage analytics systems must develop
appropriate opt-in/opt-out functionality in both the product UI and client tracking logic
that can be updated as privacy rules change, or as you evolve data collection strategies.

Adapting systems for each
region’s rules

Developers must understand regional differences, such as the EU’s stricter approach to
consumer privacy. They may need to localize data storage, ensuring that customer data
never leaves a specific region.

Complying with changes in privacy rules
on a timely basis (e.g., the requirement to
demonstrate compliance with the European
Union’s new General Data Protection
Regulation (GDPR) by May 2018).

Development teams that build their own software usage analytics systems will need
to track and respond to changes in privacy rules wherever they do business, or risk
costly penalties.

Table 5. Data protection and privacy issues.

WHITE PAPER

 | 11

Deploying a Robust, Well-performing
Solution Environment
Beyond data, several more issues drive time-to-value, reliability,
manageability, and overall ROI. Development organizations

that build their own systems must address the issues shown in
Table 6 below.

Task Discussion

Non-disruptive API-based
integration of usage analytics
into company processes and
third-party systems

With a software usage analytics API, it’s easier to leverage useful software usage analytics data in
diverse systems, including sales, marketing, business intelligence, and licensing frameworks—gaining
a more holistic view of how users work with your software and respond to your marketing. Again,
however, if you’re building a custom system, you also need to provide a syncing mechanism to join data
intelligently and inject only the specific data that should be provided to these external solutions. This
needs to be carefully planned in advance.

QA, stress testing, security,
and other factors

Developers must comprehensively test all their subsystems for reliability, performance, and security,
including:

 • The telemetry system

 • Client-side SDKs on various client platforms

 • Server-side infrastructure (using stress testing frameworks and tools)

 • Server-side application (including telemetry user interface, reporting, and visualizations)

Resilience features

Software usage analytics is business-critical. Developers must provide capabilities expected in most
modern business-critical systems, such as:

 • Secure backup and recovery

 • Automatic failover

 • Accommodate for usage spikes and uneven traffic patterns (such as those associated with new
version introductions)

 • 24x7 server and service monitoring

Support for in-app messaging
Often, the best way to address the issues surfaced by software usage analytics is to communicate with
your users directly within the application itself, via in-app messaging. If you don’t purchase a software
usage analytics solution that already includes this functionality (such as Usage Intelligence), you must
build it yourself or purchase it separately and combine it with your analytics system.

Table 6: Other key issues.

WHITE PAPER

 | 12

Limitations of Web Analytics
Some software companies have attempted to apply web analytics
frameworks to track desktop application usage, paying a monthly
fee to utilize services such as Google Analytics or Microsoft App
Insights. These software companies envision that a strategy
built around web analytics will eliminate costs associated with
hardware/software acquisition and continuous uptime monitoring.
Unfortunately, leading web analytics platforms were not designed
to address desktop software usage analytics. This has often
extended development times, and resulted in failures to capture
essential metrics or complete information about users’ journey
with a software application.

For example, Google Analytics focuses on pageviews, and can’t
efficiently track desktop applications. To track what happens
after a product is downloaded, developers must build all client-
side tracking code and manually map each captured action to
a pageview or event with a unique URL. Each time they want to
track an event, they must make a web request. The software
must constantly maintain a live internet connection, generating

internet traffic that can degrade user experience or raise
suspicions of spyware infection. To support intermittent internet
connectivity (such as usage on laptops) the developer must also
build the client side logic to cache usage data while users are
disconnected.

Moreover, since Google Analytics can’t maintain user profiles, or
generate reports spanning multiple sessions, developers can’t
track an individual’s changing behavior over time without complex
workarounds.

Microsoft App Insights was built to help organizations understand
the performance of web-based applications running on the
Microsoft Azure cloud platform, and identify root causes of cloud
application problems. However, since it lacks key elements
required in distributed Windows, macOS, or Linux applications,
significant engineering resources are needed to collect, visualize,
and analyze usage data. As requirements grow more complex,
development and maintenance costs can soar.

Usage Intelligence: The Better Alternative
As a professional software development organization with a
proven track record, given enough time and resources, you
probably can build a software usage analytics system if you really
want to. However, as this paper shows, doing so successfully is no
small task. In some respects, it may be as challenging as building
your own products.

Significant time, money, and resources are associated with
building home-grown usage analytics with the sophisticated
telemetry, data management, reporting, visualization, security, and
performance you need. Going it alone may require you to acquire
and maintain skills you don’t possess and aren’t relevant to your
core mission.

WHITE PAPER

Revenera provides the enabling technology to take products to market fast, unlock the value of your IP and accelerate revenue
growth—from the edge to the cloud. www.revenera.com

1.800.809.5659 | +44.870.871.1111 | revenera.com
Copyright © 2020 Flexera Software LLC. All other brand and product names mentioned herein may be

the trademarks and registered trademarks of their respective owners. | 400_SWM_BuildBuy_WP

NEXT STEPS

Discover how Revenera can deliver the user

insights you need to build your next great product.

 LEARN MORE >

Fortunately, there’s a much easier, faster, and lower-cost way to get the usage analytics you need: Usage Intelligence.
Working with Usage Intelligence enables you to rapidly bring a solution into production—often, with your next point release.
For example, Usage Intelligence gives you:

 • Comprehensive client, server, data, communications,
and security infrastructure—all integrated, fully-tested,
quality-assured, and optimized

 • A convenient API that lets you instrument your software
and start collecting data in as little as 30 minutes, with just
10 lines of code

 • Native support for Windows, Linux, and macOS, with native
APIs for C/C++, .NET, Objective-C and Java, so you can
instrument nearly any desktop application

 • A client solution providing for various scenarios, with inbuilt
caching, offline tracking, and reliable machine identification to
maximize tracking capabilities on the client side

 • Comprehensive reporting right out of the box, reflecting the
key metrics and KPIs that software companies have found
most valuable, all optimized to run responsively in real time
A modern interactive dashboard with role-based security,
enabling less technical users to dynamically visualize and
explore data out-of-the-box, and answer business questions
without developer or tech support

 • Straightforward integration of data and visualizations into
other processes and third-party systems via a proven SDK
and published APIs

 • Built-in support for capturing architecture, platforms, and
geolocation information to help you understand usage
patterns by user profile or region

 • Built-in in-app messaging, so you can communicate
individually with users, solve emerging problems, and point
out new features and opportunities

 • Virtually unlimited scalability

 • Access to Revenera’s extensive expertise about all technical,
business, privacy, and legal aspects of software usage
analytics, reflecting our years of experience working with
hundreds of products and companies worldwide

http://www.revenera.com
http://www.revenera.com
https://www.revenera.com/monetize/business-solutions/better-products-with-software-usage-analytics.html

