F L E E R A InstallShield Tips & Tricks

SOFTWARE

Using And Controlling The RadioButton/RadioButtonGroup Controls In IPWI (and
their associated private Windows Installer Properties).

Abstract:

Whenever we have the requirement to author an installation at a more advanced level, this invariably
involves us modifying and customizing the user interface that is displayed to the end user.

Of the many standard controls available to Windows Installer are the RadioButton and RadioButtonGroup

controls which work hand-in-hand to allow the setup author to present the end user with options and
perform processing based on those choices.

This article will expose the workings of the aforementioned controls and give some technical advice as
how to really determine how these work, expose some of the ‘hidden’ and undocumented functionality of
Windows Installer properties which work around these controls and finally present some practical and
‘real world’ scenarios where you might want to do this.

Page 1 of 10

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved.

InstallShield Tips & Tricks

How the RadioButtonGroup Control Works.

In order to achieve the ‘usual’ behavior that we are used to for a RadioButton control, that is to say that
there is a ‘group’ of RadioButtons and they are being used to set some value (in our case a Windows
Installer Property) based on which one was selected, we must first apply a RadioButtonGroup control to
the dialog.

Once you add a RadioButtonGroup to a dialog using the IT toolbar button, IPWI will prompt you to enter
a property which will represent that RadioButtonGroup. ~ We will use this RadioButtonGroup control as a
placeholder fo r RadioButton controls, and it will be these RadioButton controls which set the Property
(specified for our RadioButtonGroup) to the appropriate value, based on the option the end -user selected.

Below can be seen the dialog requesting the name of the prop erty for the RadioButtonGroup:

Control Property

Enter the property For this control:

o Zancel

We see with other dialog controls, the RadioButtonGroup control has many properties pertaining to the
look and feel we can apply to the control. However, the most important property of this

RadioButtonGroup control is th e ‘Property’ property. It is this property item which holds the actual
Windows Installer Property that the RadioButtonGroup will be exposing to the RadioButton controls within
it (covered in the next section).

Once added, your RadioButtonGroup will have a ‘framed’ border visible by default, this is represented by
the ‘Has Border’ property of the control and can be set to either ‘True’ or ‘. We can see the properties list
below, showing the ‘Property’ property mentioned above in this case set to ‘TESTPRO PERTY’) and the
recently mentioned ‘Has Border’ property:

[l
IRadinButtonGroupl (RadioButtonGroupj
Property | alue
{Mame) RadioButtonGroupl
Base Text Style
Cancel False
Caontext Help
Default False
Enabled True
Has Border True
Height 105
Indirect Property | False
Left 360
Property TESTPROPERT‘.’|
Right-aligned False
Sunken False
Tab Index i}
Tab Stop True
Text
Text Style
Toolkip
Top [=X]
Wisible True
width 294

Page 2 of 10

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved.

InstallShield Tips & Tricks

If ‘Has Border’ is set to ‘False’ the control will have no border much like the standard dialog we see below
for the LicenseAgreement (the only reason we see a border here is because it has been selected for
illustration purposes):

i [ProductName] - InstallShield Wizard

License Agreement

Flease read the Following license agreement carefully,

To add your own license text ta this dialog, specify your license agreement File in the Dialog editar,

Mavigate to the User Interface view,

Select the LicenseAgreement dialog.

Choose ko edit the dialog layout.

Once in the Dialog editor, select the Memo ScrollableText contral,
Set FileMame to the name of vour license agreement. RTF File,

T L

nfter vou build vour release, vour license text will be displaved in the License Agreement dialag,

(™ I accept the terms in the license agreement

" 1donat accept the terms in the license agreement P

HECalar - =

< Back Mext = Cancel

Things to note:

tf You MUST first place a RadioButtonGroup onto your Dialog if you want to use
RadioButton controls, this will NOT be done automatically for you.

Lr“ When you delete a RadioButtonGroup, all of the RadioButton controls within it will
also be removed.

tr“ Windows Installer handles the whole group as one single control, thus, individual
RadioButton controls cannot be independently enabled/disabled.

L‘«‘ When manipulating the user interface of a dialog the easiest and best way to find the

RadioButtonGroup control is to select it from the pull-down list at the top of the
properties list we saw on the previous page.

As with all Dialog controls, the RadioButtonGroup control is stored in the Control table, to quickly
associate this control with a Property (user-defined or otherwise) you can populate the ‘Property’ Column
of this Control table.

Once you have created a RadioButtonGroup, you can go ahead and drop some RadioButton controls
onto it — this is covered in the next section.

Page 3 Of 10

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved.

InstallShield Tips & Tricks

How the RadioButton Control Works.

Before we go into this topic we must first be clear about what Windows Installer thinks of as a
RadioButton Control and ensure that we appreciate the difference between this and a ‘normal’ Windows -
style RadioButton control.

In Windows, a RadioButton control will work independently, whereas a Windows Installer RadioButton
Control is not seen as an individual control, but always as part of a group; using the RadioButtonGroup
we discussed earlier. As such, the whole RadioButtonGroup will operate as one control, (regardless of
the number of RadioButton Controls within it), changing the value of the RadioButtonGroup’s Property’
property based on the individual RadioButton that the end-user selected.

To add a RadioButton Control to your dialog, simply select the RadioButton Control toolbar button F
and drop it onto a previously created RadioButtonGroup.

If we take a dialog such as the LicenseAgreement Dialog we firstly see it has a RadioButtonGroup called
‘Agree’, as shown below:

]inzl [ProductName] - Installshield Wizard Ed
I.f-\gree (RadioButtonGroup) j
License Agreement Properky |\z'alue
Please read the Fallowing license agreement carefully, (Mame) Agres
Base Text Skvle
Cancel False:
Context Help
To add vwour own license kext to this dialog, specify vour license agreement file in the Dialog editor, Defaule False
1. Mavigate to the User Interface view, Enabled True
. Select the LicenseAgreement dialog, Has Border False
3. Choose to edit the dialog layout, Height 40
M. Oncein the Dialog editor, select the Memo ScrollableText contral. Indirect Property | False
E. Set FileName to the name of vour license agreement RTF File, Left g
AFter vou build vour release, wour license et will be displaved inthe License Sgreement dialog, Property AgreeTolicense
Right-Aligned False
Sunken False:
Tab Index i}
(™" I accept the terms in the license agreement Tab Stop True
(ol do not accept Ehe terms in the license agreement : Text
Text Style
AaralEriEld Toalip
Top 159
= Back | Mext = | Cancel | Visible True
Width 330
We see that the RadioButtonGroup has its ‘Property’ property set to ‘AgreeToLicense’. This is the

property which applies to all the RadioButton Controls that are placed within this RadioButtonGroup.

You will notice that from the screenshot above, the LicenseAgreement Dialog has two
RadioButtonControls within the RadioButtonGroup. If we inspect the properties list for each of these

RadioButton Controls we will see that they have a property called ‘Va lue’.

The ‘Property’ property of the RadioButtonGroup is set to the ‘Value’ property of the RadioButton Control
when it is selected by the end-user. Taking a look at the default functionality of a Windows Installer
Installation, we see that the individal RadioButton Controls on the Dialog above have the following
settings for their respective ‘Value’ properties:

AgreeTolLicense1 (“l accept the terms of the license...”) Yes
AgreeTolLicense2 (“l do not accept the terms of the license...”) No

Page 4 of 10

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved.

InstallShield Tips & Tricks

As a result, once the end -user selects either ‘| accept the terms of the license...’, or ‘| do not accept the
terms of the license’ the property ‘AgreeToLicense is set to either ‘Yes’ or ‘No’.

If you want to make an RadioButton selected as default on your dialog, you simply need to use
the Property Manager (off the ‘Organize Your Setup’ section of IPWI 2.0x) and make a new entry
‘\..f under the name of the RadioButtonGroup ‘Property’ property. If you want to ensur e the scope of
- this property is public, make sure the name of the property is in uppercase. Next, enter the value
which matches the ‘Value’ property of the RadioButton control you want to become the default
option. This will force the nominated RadioButton control to be selected as default when the
Dialog is displayed.

Within the Dialog Editor of IPWI you have two toolbar buttons of interest, the RadioButtonGroup

o =
[k:.f Control; |—" and the RadioButton Control itself; lF In Windows Installer there is no real

separate RadioButton Control, behind the-scenes, we create RadioButton Controls by adding
entries to the RadioButton Table and link these entries to the RadioButtonGroup by means of the

RadioButtonGroup ‘Property’ property. The l'rT toolbar button has bee n provided as an quick
method of populating this RadioButton Table (See MSI help for more information).

Each RadioButton Control also has a property called ‘Order’. This must be a positive integer and
represents the ordering of the RadioButtons on the dialog. The default ordering for RadioButton Controls
is their order of creation, i.e.- the order in which they were added to the Dialog in the Dialog Editor.
(These do not have to be consecutive numbers).

So, now that we have a more in-depth understanding of the RadioButton Control, lets use this information

on what the user selected by looking at how this is used to control the installation. When we run an
installation, the ‘Next’ button is not enabled until the end -user selects the ‘I accept the term s of the license
agreement’ option on the ‘LicenseAgreement’ dialog. This works by using the ‘AgreeToLicense’ property

in a Condition.

When we are using Windows Installer, we have no concept of variables like we might have in a
programming language, in stead we have ‘Properties’. Some of these ‘Properties’ can be viewed and
manipulated via the Property Manager off the ‘Organize Your Setup’ section. The ‘AgreeToLicense’
property is used by the ‘Next’ button on the ‘LicenseAgreement’ Dialog. To inspect what really goes on
here, we must go to the ‘Behaviours’ section of the Dialog, as shown below, and select the ‘Next’
PushButton Control:

¥ Dialogs

----- Installshield Today EI--@ Dialogs
-4 Help =0 Al Dislogs

Best Practices = AdminChangeFalder Contral Mame I Type

H- = adminbetworkLocation | | Adree RadioButtanGr
7= Adminwelcome Back PushButton
725 CancelSetup BannerLing Line:

LicenseAgreement Dialog |

EI--“ Organize Your Setup
8] General Information
@ Path Wariahles

-[23] Property Manager -2 CustomerInfaormation glarécel ?usﬂhﬂuﬂnn
EI--e Specify Application Data =] CustomSetup DIgT';zC szt

2; Setup Design #-5] CustomSetupTips Imgage Bitmap

{5 Features =] DestinationFolder Memao SorollableTest

@ Components =] DiskSpaceRequirements PushBLtton

- Feq Merge Module Details = FilesInlse

--{3] Destinations =] InstallChangeFolder

@ Dependencies E| Installwelcome

NI File Changes E|:| LicenseAgresment
[—]e Design the User Interface % Behavior

. 4Y Dialogs o e English (United Stake:

"% Bilboards =] MaintenanceType

Elﬂ Define Sequences & Ackions :I MainkenanceWelcome

Page 50f 10

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved.

InstallShield Tips & Tricks

Once we have selected the ‘Next’ PushButton Control we can see that it fires a ControlEvent called
‘NewDialog’ whic h informs the installer to move on from one modal dialog box to another, thus creating
the ‘flow’ of dialogs so typical of installations. The ‘Argument’ parameter shown is the name of the dialog
to display, in the example below, the next dialog to be show n is the ‘Customerinformation’ dialog:

¥ Dialogs

E‘@ gﬁb‘f I LicenseAgreement Dialog Be
[=]- All Dialogs
+]- =] AdminChangeFalder Cortrol Name I Type Next PushButton

= i i Aogree RadioButtonG
g =5 AdminhlstworkLocation d Ewent Argument Condition
== AdminWelcoms Back PuzhButtan - " - Y
H BiannerLine Line MewDialog CustomerInformation AgreeTolicense = "fes'
=1 Cancelsetup cancel PushButton Click here bo add a new item

=51 CustomerInformation

=] CustomSetup DIgD.esc Texd
" Dl Title Text
== CustomSetupTips Image Bitmap
3] DestinationFolder Memo ScrollableText

=5] DiskSpaceRequirements
=] FilesInUse

== InstallChangeFalder

+- =] Instalwelcome

E|E| LicenseAgreement

: % Behavior

% English (United State:

PuzhBLutton

On the previous page we were discussing the use of the ‘AgreeToLicense’ property within a standard
installation. In the screenshot above we can see that this property can be used within a Condition much
like any other Windows Installer property, this example shows how the ‘Customerinformation’ Dialog is
only displayed (via the NewDialog ControlEvent) if the value of ‘AgreeToLicense’ equals ‘Yes’.

The ‘AgreeToLicense’ property would only equal ‘Yes’ if the appropriate RadioButton Control was
selected by the end -user, referencing the table we saw earlier in this article we can double-check which
individual RadioButton Control was responsible for this:

AgreeTolLicense1 (“l accept the terms of the license...”) Yes
AgreeToLicense2 (‘I do not accept the terms of the license...”) No

Remembering that the RadioButton ‘Value’ property updates the RadioButtonGroup ‘Property’ property, it
is this we are using in a Condition illustrated in the at the top of this page, and shown below:

AgreeTolLicense = “Yes”

Page 6 Of 10

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved.

InstallShield Tips & Tricks

Hidden Wind I . lable , ,

Now that we have looked at how the RadioButtonGroup and RadioButton Controls interact with one
another and set Windows Installer Properties, | will take this opportunity to expose some more of the
functionality of Windows Installer installations. You may recall that to date we have been using the
‘LicenseAgreement’ Dialog to illustrate the aforementioned Dialog controls. We also saw how the
‘AgreeToLicense’ property was set and updated according to the user input via the Dialog’s
RadioButtons.

Whenever we re -run an installation with Windows Installer it will, by default, invoke what we call the
‘Maintenance Mode’ for the installation. This will present the end -user with a alternative dialog with three

main options, these options are:

Modify
Repair
Remove

These options are represented by RadioButton Controls, which of course are part of a group -
represented by the RadioButtonGroup control, as per the screenshot below:

',inq [ProductMame] - InstallShield Wizard

Program Maintenance

Modify, repair, or remove the program.

"~ Modify

Change which program Features are installed, This option displats the
Custom Selection dialog in which vou can change the wayv Featuss are
installed.

"~ Repair
g Repair installation errars in the program, This option fixes missiné ar
corrupt files, shorkcuts, and registry entries.,

{~ Remoyve

@ Rermove [ProductMame] Fram yvour computer,

InistallShisld
< Back. Mext = Cancel
The RadioButtonGroup selected above can Notice how the RadioButtonGroup named
be seen from the properties list (below): ‘RadioGroup’ has the ‘Property’ property
populated as ‘_IsMaintenance’;
= [RadioGroup (RadioButtonGroupd
MainkenanceType (Dialog) j Property [walue
Cancel {PushButton) - (Mame RadioGroup
DlgDesc (Text) Base Text Style =Default >
DlgTitle {Text) Cancel False
Icol (Icon) Context Help
IcoZ (Icon) Drefault False
Icod (Icon) Enabled True
MaintenanceType (Dialog) — Has Border False
Height 170
Indirect Property | False
Left 21
Property _IsMaintenance

Page 7 of 10

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved.

InstallShield Tips & Tricks

This ‘_IsMaintenance’ Property is populated with the ‘Value’ property from any one of the three
RadioButton controls visible on the Dialog. The three RadioButtons on this Dialog can be seen in the
pull-down list of Dialog Controls below; their respective ‘Value’ Properties can be seen in the table on the
right-hand side:

=
=

| v

_IsMaintenance? (FadioButton) . "
_IsMainkenance3 (FadioButton) _ISMalntenance1 MOdlfy Change

Back (PushButton) _IsMaintenance2 Repair Reinstall
Banner (Bitmap) b IsMaintenance3 Remove Remove
Bannerline (Line) =
Cancel (PushButton)

DlgDesc (Text)

DlgTitle (Text) bl

Using the concepts we discussed earlier in this article we can see how by using the Property Manager
shown below we can force one of the RadioButton controls to be the default option by changing the value

of *_IsMaint enance’ to match one of the values illustrated in the table above (i.e. ‘Change’,’Reinstall’ or
‘Remove’).

Note that the default value for this *_IsMaintenance’ property is ‘Change’ forcing the ‘Modify’ (middle)
RadioButton to be selected when the dialog is first shown:

Project Property Manager

Mame Value Comments
IsMaintenance i Change
_IsSetupTypeiin Typical
agreeTaolicense o
ApplicationUsers Alldsers
ARPALUTHORIZEDCDFPREFT-
ARPINSTALLLOCATICMN
ARPNOMODIFY u]
ARPMOREMOYE 0
ARPMOREPALR 0
ARPPRODUCTICON
ARPSIZE

This ‘_IsMaintenance’ property is a largely un -documented property of Windows Installer, as such you will
not find it referenced in the IPWI help or the Microsoft Windows Installer help library. There are articles
available at support.installshield.com with more information on the different functionality for each of the
possible values of the ‘_IsMaintenance’ property.

Page 8 Of 10

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved.

http:support.installshield.com

InstallShield Tips & Tricks

Utililizing these Properties within a Custom Action Condition to achieve a ‘real -world’ solution.

The final part of this article is to propose a real-world scenario where you might want to use this un -
documented ‘_IsMaintenance’ Property to your advantage.

Scenario:

Let us suppose that your installation had the requirement to display a .ixt file of release notes to the end

user but only if they selected the ‘Modify’ option off the MaintenanceType dialog.

The first stage is to create a Custom Action

(off section @ ‘Define Sequences & Actions’) that will launch

Windows Notepad with the .txt file. For the purpose of this scenario we can use the ‘Custom Action
Wizard’, shown below:

< Actions /Scripts

- A Installshield Taday

&P Help

Best Practices

[—:I--o Organize Your Setup
4] General Infarmation
@ Path Yariables

----- 23] Property Manager
[—:I--e Specify Application Data
----- Setup Design

- Features

@ Components

----- 14 Merge Module Details
-{#] Destinations

@ Dependencies

IMI File Changes
[—:I--e Design the User Interface
i-4S Dialogs

29 EBilboards

fine Seguences & Actions
4i, Sequences

o Ackions|Scripks

=L Actions/Scripts
9 Standard Actions

% Install Hew

Delete
Renarme

Cust

Custom Action Wizard...

Expork...

Cust
Actio

Once we have run through the ‘Custom Action Wizard’ we will have a newly created Custom Action, in
this case called ‘launch_notepad’:

wy Actions /Scripts

----- Installshield Today

Help

Eest Practices
[]--0 Organize Your Setup
[]—-9 Specify Application Data
[]--e Design the User Interface
[—]—-0 Define Sequences & Actions
Sequences

= Actions/Scripts
- Standard Actions
=17 Custom Actions
¢ 8 launch_notepad
@ InstallScript

Page 9 Of 10

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved.

InstallShield Tips & Tricks

We now need to inse rt this Custom Action into the ‘Sequences’ view of our installation) for example, into
the Installation ->Execute Sequence). Once inserted, we can then use the ‘_IsMaintenance’ Property as
part of a Condition, which will control when the Custom Action will execute.

For our example, we recall that the scenario was to ensure that Windows Notepad was launched when
the end-user selected the ‘Modify’ option.

Using the table on p8 we would see that the corresponding value for *_IsMaintenace’ is ‘Change’.
Therefore, we write the following Condition and attach this to the Custom Action, as shown below:

launch_notepad Custom Action
Sequence Mumber 1975
ZCondition | IsMaintenance = “Change"

Comments

As a result of this Condition, the Custom Action ‘launch_notepad’ will only execute if the end-user
selected the ‘Modify’ option off the ‘Program Maintenance’ dialog (known as ‘MaintenanceType’ within
Windows Installer.

Page 10 Of 10

©2010 Flexera Software, Inc. and/or InstallShield Co. Inc. All rights reserved.
IS_UsingandControlling_RadioButton_TT_Aug08

