
© 2010 Flexera Software, Inc. and/or InstallShield Co. Inc.

All other brand and product names mentioned herein may be the trademarks and registered trademarks of their respective owners .

www.flexerasoftware.com U.S. +1 800-809-5659 EMEA: +44 870-871-1111 +44 870-873-6300 APAC: +81 3-4360-8291

 InstallShield Tips & Tricks
–––

Creating MSI Update Packages
This tip describes the database changes required for different types of MSI updates, and describes how to

use the tools provided in InstallShield to simplify the update-development process.

Minor Upgrades

In addition to the new files and other data in your update package, to create a minor upgrade you must

change the package code and product version of your installer.

NOTE: By default, when you run an installation from the InstallShield environment by clicking the Run

toolbar button, InstallShield will quietly uninstall any previous version of your product present on the

development machine. To change this setting so that deploying an installation from the environment will use

the default MSI behavior, pull down the Tools menu, select Options, select the Preferences tab, and clear

the check box labeled “Uninstall before installing”.

To deploy the minor upgrade, a typical command line is the following:

msiexec /i product.msi REINSTALLMODE=voums REINSTALL=ALL

If the update contains features that you do not want to update, you should set REINSTALL to a comma-

separated list of the features that you do want to update, as in the following command (names you use in

the REINSTALL property are case-sensitive):

msiexec /i product.msi REINSTALLMODE=voums REINSTALL=F1,F3,F5

The important setting for deploying a minor upgrade is the REINSTALLMODE flag “v”, which indicates to run

the installer using the updated MSI database and to re-cache the package based on the new database.

Without the “v” flag, Windows Installer runs the installer based on the cached version of the existing earlier

product version.

NOTE: You must take care not to set REINSTALL=ALL for a first-time installation. Later you will see how

InstallShield can create a setup launcher that sets REINSTALL dependent on whether an earlier version of

the product is present on the target system.

Major Upgrades

For a major upgrade, as indicated in the earlier table, you must change the package code (in the Summary

Information Stream); you will usually change the product version (in the ProductVersion property in the

Property table); and now must also change the product code (the ProductCode property in the Property

table).

When you change the product code, Windows Installer treats your latest and previous product versions as

unrelated, even though the ProductName values are likely the same. If you want both versions of your

product to be installable on the same system, you can simply change the product code and the main

installation directory (often INSTALLDIR). (Naturally, the application must have been developed to support

multiple simultaneous instances by separating each instance’s configuration settings and data files.)

© 2010 Flexera Software, Inc. and/or InstallShield Co. Inc.

All other brand and product names mentioned herein may be the trademarks and registered trademarks of their respective owners .

www.flexerasoftware.com U.S. +1 800-809-5659 EMEA: +44 870-871-1111 +44 870-873-6300 APAC: +81 3-4360-8291

If instead you want your latest product version to supersede an earlier installed version, you will populate

records in the Upgrade table. A record in the Upgrade table contains the following fields:

 The UpgradeCode value of the product(s) you want to update.

 A range of versions of products to update.

 Optional language information for the product to update.

 An optional list of features to remove.

 A public property (called an “action property”) associated with any products to update.

A sample record in the Upgrade table might appear as follows.

UpgradeCode {11111111-2222-3333-4444-555555555555}

VersionMin 1.0.0

VersionMax 2.0.0

Language

Attributes 1025

Remove

ActionProperty OLDPRODUCTS

The bit flags used in the Attributes field are described in the MSI Help Library page “Upgrade Table”. The

value 1025 used here means that all languages should be detected (1024) and that feature states should be

migrated (1) from the installed product to the latest product.

In addition to adding records to the Upgrade table, some further authoring steps required are to:

 Add the action property name to the value of the SecureCustomProperties property.

 Ensure the value of ALLUSERS is the same in the before and after versions, through a custom

action or from the command line.

TIP: Because the packages involved in a major upgrade have different product codes, you cannot use the

MSI property “Installed” to determine if the earlier version of your product is present on the target system.

Instead, the older product version can determine if it is being removed because of a major upgrade using

the UPGRADINGPRODUCTCODE property; the newer version can use the action property (say,

OLDPRODUCTS) that you defined in the Upgrade table.

At run time, the standard MSI action FindRelatedProducts reads the records in the Upgrade table, and, if a

related product is found, the product code for that product is added to the action property.

FindRelatedProducts is by default placed early in both the User Interface and Execute sequences.

The MigrateFeatureStates action (if appropriate) attempts to migrate the feature-selection states from an

installed product version to the newer version. Finally, the standard RemoveExistingProducts action reads

the product codes stored in the Upgrade table action property, and in effect performs silent nested-

uninstallation actions on those products.

The RemoveExistingProducts action can be placed in different locations to define different types of upgrade

behavior. In short, placing RemoveExistingProducts early in the Execute sequence instructs Windows

Installer to completely remove the existing product data before installing the new product. Placing

RemoveExistingProducts late in the Execute sequence causes the upgrade to install the new product data,

and then remove old data.

TIP: The Attributes field of the Upgrade table also supports a detect-only bit (value 2). If an Upgrade

record has the detect-only bit set, the action property defined in that record will be populated with the

© 2010 Flexera Software, Inc. and/or InstallShield Co. Inc.

All other brand and product names mentioned herein may be the trademarks and registered trademarks of their respective owners .

www.flexerasoftware.com U.S. +1 800-809-5659 EMEA: +44 870-871-1111 +44 870-873-6300 APAC: +81 3-4360-8291

product codes of corresponding product versions, but the RemoveExistingProducts action will not remove

those products. The detect-only bit is useful, for example, when creating a custom action that prevents an

older version of the product from installing over a newer version. Recent InstallShield versions automatically

create such an Upgrade-table record and custom action for new Basic MSI projects. For more information

about creating such a custom action, see the MSI Help Library page “How do I prevent an old package from

installing over a newer version?”

TIP: If you use the same UpgradeCode value for every release of your product, an external program or

custom action can determine the product codes of any installed copies of your product using the MSI API

MsiEnumRelatedProducts, or the RelatedProducts property of the MSI Automation interface.

When you define a major upgrade, it can be useful to run MSI validation on your upgrade package. The

rules ICE61, ICE63, and ICE74 can detect package-authoring errors related to major upgrade packages. By

default, InstallShield performs upgrade validation during the build process to flag common authoring

problems with the different types of upgrades.

To deploy a major upgrade package, the user can simply launch the MSI database or setup launcher,
without needing to set any special values for REINSTALLMODE or REINSTALL.

Begin a Free Evaluation of InstallShield

You can download a free trial version of InstallShield from the Flexera Software Web site at:

www.flexerasoftware.com/installshield/eval

Want to learn more best practices for building quality installations? Join an InstallShield training class –

visit www.flexerasoftware.com/training for available classes.

You can also get more tips on building MSI installations in our white papers area at

www.flexerasoftware.com/whitepapers

http://www.flexerasoftware.com/installshield/eval
http://www.flexerasoftware.com/training
http://www.flexerasoftware.com/whitepapers

