
W
H

IT
E

 P
A

P
E

R

Designing an Update-Friendly
MSI Installat ion
by Robert Dickau
Principal Engineer, Flexera Software

Designing an Update-Friendly MSI Installat ion

Flexera Software: InstallShield White Paper SeriesII

Designing an Update-Friendly
MSI Installat ion
Introduct ion
Creating and deploying software updates is standard
procedure for virtually every software company in the world.
Knowing strategies for how to create an update-friendly
Windows Installer (MSI) installat ion goes a long way to
ensuring a smooth, error-free update experience for your
end users down the road.

In this white paper, you will learn about designing your
original Windows Installer setup project to best prepare it
for future upgrades, and how to design upgrade packages
to install later versions of your products. It will also provide
an introduct ion to the different types of updates supported
by Windows Installer. Finally, at t imes throughout the
white paper it will explain how InstallShield® from Flexera
Software can assist with the installat ion and update
authoring process.

Types of Upgrades
Windows Installer supports three types of product upgrades:
small updates, minor upgrades, and major upgrades. The
three types of upgrades are defined as follows.

	 •	�A small update consists of product changes, such
as hot fixes, so small that no change to the product
version is necessary or desired. (A drawback to small
updates is that external programs, including installers
for later versions of your product, will not be able to
dist inguish a product with the small update applied
from one without the small update.)

	 •	�A minor upgrade is a change to the product large
enough to merit a change to the product version, such
as updating version 1.1 to 1.2, but in which there have
been no significant changes to the setup organization
between versions. The install-t ime behavior of a minor
upgrade is to install over the exist ing product.

	 •	 �A major upgrade includes substant ial product
changes, such as updating version 1.2 to 2.0. A
major upgrade can contain significant changes to the
setup architecture. The install-t ime behavior of a major
upgrade can be to uninstall the earlier version and
install the new one, or to install over the earlier version
and then remove any leftover data.

NOTE: For an earlier product version that was installed with
a legacy (non-MSI) setup, a custom act ion will normally be
required to uninstall or modify the exist ing product installat ion.

Packaging and Deploying Upgrades
Windows Installer provides different methods for packaging
upgrades, and the different opt ions affect the way the
upgrade is applied to a target system.

Packaging Options
An upgrade can be packaged for deployment to the target
system as a full installat ion (MSI package). An upgrade
packaged as a full installat ion can be authored (using
custom act ions, command-line switches, or a setup launcher)
to upgrade an exist ing product if one is present, or
otherwise to behave as a first-t ime installat ion.

An upgrade can also be packaged as a Windows Installer
patch file (a file with the MSP extension). A Windows
Installer patch contains changes between the files (and other
data) and MSI tables in the earlier and later versions. The
file differences stored in a patch can be binary, byte-level
differences, possibly result ing in a much smaller deliverable
than an update packaged as a full installat ion package. An
update that you package as a patch file can be used only to
upgrade an exist ing, installed product, and cannot be used
as a first-t ime installat ion.

Small updates and minor upgrades are commonly packaged
as patches, while major upgrades are usually packaged as
full installat ion packages.

2

Designing an Update-Friendly MSI Installat ion

3Flexera Software: InstallShield White Paper Series

NOTE: A common misapprehension is that patches are
a separate type of upgrade, as opposed to a packaging
mechanism. In fact, the patch-development process involves first
designing a minor or major upgrade, and then packaging it as
a patch. Before creat ing a patch, it is recommended you test
the update as a full installat ion package.

Deploying Upgrades and Patches
When you run an MSI installat ion package for the first
t ime on a given system, Windows Installer caches the MSI
database in the hidden directory %WINDIR%\Installer.
By default, when you run the same package a second or
later t ime on the same system, Windows Installer runs the
package in maintenance mode, using the cached database.
(A package is typically authored to show a different series
of dialog boxes for first-t ime installat ions and maintenance-
mode installat ions, using condit ions such as “Not Installed”.)

During the init ial installat ion, the MSI database is cached
on the user’s system, but the product’s data files are not.
If a maintenance operat ion results in a file having to be
installed, MSI will require access to the original installat ion
source, prompting the user to locate the source if it cannot
be found (for example, if the installat ion was performed
from a DVD that is no longer in the drive). For this reason,
you should either build a release with the MSI database
external to a setup launcher, or create a setup launcher that
caches the installat ion on the local machine.

When you deploy a major upgrade package, no special
command-line switches or property values are required.
When deploying a minor upgrade package, however,
you will generally need to set appropriate values for the
REINSTALLMODE and REINSTALL propert ies, as described in
the following sect ion.

About REINSTALLMODE and REINSTALL
To avoid maintenance mode for a small update or minor
upgrade installer, the MSI property REINSTALLMODE must
be set at the command line, either by the user or by a
setup launcher. The REINSTALLMODE property defines what
types of data should be reinstalled: the value is a string of
characters, where each character indicates a part icular type
of data to reinstall. (A major upgrade typically does not
need any special propert ies set at the command line.)

The default REINSTALLMODE value is “omus”, where the
characters stand for the following:

	 •	�o: reinstall a file only if it is missing from the target
system, or if the exist ing file on the target system is
older.

	 •	 �m: reinstall machine-wide registry data.
	 •	�u: reinstall user-specific registry data.
	 •	�s: reinstall shortcuts.

When deploying a small update or minor upgrade, the
key is to re-cache the cached MSI database by including
the letter “v” in the REINSTALLMODE value, as in
REINSTALLMODE=voums. (The order of characters in the
REINSTALLMODE value is unimportant.)

NOTE: The “v” opt ion for REINSTALLMODE must be set
at the command line when the minor upgrade installat ion
is launched; the other REINSTALLMODE sett ings can be
act ivated within a running installat ion. InstallShield can help
you create a setup launcher for a minor upgrade that detects if
an earlier version of a product is installed on a system, and sets
REINSTALLMODE and REINSTALL appropriately. Moreover, MSI
validat ion rule ICE40 posts a warning if REINSTALLMODE is
set in the Property table.

For an update installer, the REINSTALL property should
also typically be set. The REINSTALL property should be
set to a comma-separated list of features to reinstall (using
the internal feature names, and not the localized display
names), or to the special value “ALL”. Sett ing REINSTALL
to ALL causes only the features already installed by an
earlier installat ion to be reinstalled. For this reason, sett ing
REINSTALL to ALL is inappropriate for a first-t ime installat ion:
during a first-t ime installat ion, no features have yet
been installed.

When running a minor upgrade packaged as a full MSI
package, a typical command line is the following:
msiexec /i ProductName.msi REINSTALLMODE=voums
REINSTALL=ALL

A patch can be distributed using the MSP file, or by
creat ing an Update.exe file that wraps the MSP and passes
the appropriate REINSTALLMODE and REINSTALL property
values to the Windows Installer engine.

To deploy a patch, a typical command line is the following:
msiexec /p patch.msp REINSTALLMODE=oums
REINSTALL=ALL

Because a patch does not modify the exist ing cached MSI
database, including the “v” sett ing for REINSTALLMODE
is unnecessary.

At run t ime, a patch transforms the cached MSI database,
and then runs it in maintenance mode. A patch file is also
cached on a target system, in the same location as cached
MSI databases.

Designing an Update-Friendly MSI Installat ion

Flexera Software: InstallShield White Paper Series44

Designing an Update-Friendly Installat ion
The design of your installat ion projects—the organization
of a product’s features, components, and key paths—has
an impact on the effect iveness of future updates. The
effect iveness of an upgrade or patch is gauged by
the following:

	 •	�The new package updates the appropriate installed
product: the package installs new and updated product
data, and does not remove any required data.

	 •	�An update packaged as a full installat ion should
behave correct ly as a first-t ime installat ion if no
earlier version exists on the target system. (An update
packaged as a patch cannot act as a first-t ime
installat ion.)

	 •	�The product information registered on the system
should display information only for the newest product
version. There should not, for example, be more than
one entry for your product present in the Programs and
Features panel.

For patch packages, there are addit ional considerat ions:

	 •	�The patch package should be as small as possible,
when appropriate containing byte-level differences
between the files in your earlier and later installat ion
packages.

	 •	�The patch should avoid unnecessary prompts for the
source media.

This white paper provides some general guidelines for
creat ing update-friendly projects, both for the original
installat ion and for update installat ions.

Organizing the Original Project
The design of the first release of your original installat ion
project can have a significant effect on the success of later
updates applied to it. This sect ion offers some t ips for
organizing your init ial MSI installat ion project, and where
appropriate describes the applicable Windows Installer
behavior or best-pract ices guidelines that motivate
these t ips.

NOTE: These t ips apply largely to minor upgrades. In general,
the uninstall-then-reinstall nature of major upgrades makes
them less suscept ible to problems related to the organizat ion
of an installat ion project. The InstallShield Upgrade Validat ion
Wizard automates detect ion that many of these rules have
been followed. To launch the wizard, use the Build > Validate
> Upgrade Validat ion Wizard command. “ The InstallShield
help topic “Validators” describes the tests performed during
upgrade validat ion.

Tip 1: Whenever possible, use versioned key files.
As described later in this white paper, part of Windows
Installer’s contribut ion to system stability is the enforcement
of strict file-versioning rules. However, MSI ordinarily
performs version comparison only on the key file of a
component when deciding whether to install a component

during a reinstallat ion or update installat ion. A simple way
to ensure that a component will be updated in your new
product version is to give your key file a newer version than
the corresponding file on the target system.

This t ip is related to the MSI best-pract ice rule of putt ing
at most one portable executable file—EXE, DLL, OCX, and
the like—in a component, and marking that file as the key
file of its component. In addit ion to giving you the most
effect ive repair mode for your installat ion, having more
components leads to more desirable default behavior if only
some of your files are updated in your new product version.

Tip 2: Part it ion your product into discrete sets of features.
The primary use of features is to provide user-selectable
pieces of your product’s funct ionality. An early part of the
design of your installat ion program is to define the features
(and subfeatures, and so forth) that you want the user to be
able to see and configure.

Most installers provide a custom setup type, which displays
to the user a panel similar to the following, where the user
can select which product features to install.

This end-user view of your installer is the foundation of the
other features you need to configure.

There is no fixed list of rules for dividing an applicat ion into
features. In some cases, the architecture of your applicat ion
will suggest divisions into features (Program Files, Help
Files, Tools, Examples, and so forth). In other cases, it will
be necessary to define art ificial boundaries within your
applicat ion to create features of a manageable size.

After you part it ion your product into user-selectable features,
you can further divide these features into subfeatures. For
each of these subfeatures, you can set the Display attribute
to Not Visible, set the Remote Installat ion attribute to Favor
Parent, and set the Required attribute to Yes. In this case,
the user will see and interact with only the visible features,
but the installat ion will behave as if all the applicat ion
resources in the subfeatures are part of the main feature.

Designing an Update-Friendly MSI Installat ion

5Flexera Software: InstallShield White Paper Series

Note that marking a subfeature as Required will cause the
subfeature to be installed only if its parent feature
is installed.

The more features your project has, the more flexibility you
have in reinstallation behavior. The REINSTALL property,
which should be set during a minor upgrade installation,
accepts a list of features to reinstall. When applying a minor
upgrade (especially as a patch), you should not use the
sett ing REINSTALL=ALL, but instead explicit ly specify the
features that you want to reinstall.

A related common pract ice is to create a top-level “product”
feature, as in the figure above.

Tip 3: Put user-configurable registry data in its own feature.
When a minor upgrade is applied, all of the registry data
in all the features being reinstalled will also be reinstalled;
this will occur even if the component containing the registry
data is not being updated. This means that any registry
sett ings that have been modified from their original values
will revert to their default values. In some cases this is
acceptable behavior, but usually you will not want to
replace the user’s configurat ion sett ings with the original
factory sett ings.

If you place user-configurable registry data in its own
feature, as described in the previous t ip, that feature will not
be reinstalled unless it is listed in the value of the REINSTALL
property being set during the update.

If you want not to reinstall any registry data, you can also
omit the “m” and “u” flags from the REINSTALLMODE value.
However, this sett ing applies to the ent ire installat ion, and
can have undesirable effects during the applicat ion of
a patch.

Tip 4: MSI property values are not automatically saved
during the init ial installat ion.
With a few exceptions, the values of MSI propert ies that
are set during the init ial installat ion will not be available
during maintenance mode or an update scenario. If you
believe you will need a property’s value to be available to
a later maintenance or update installat ion, one common
pract ice is to write the property’s value to the registry during
the init ial installat ion, and read the data back during the
later installat ion.

To write a property’s value to the registry, you can take
advantage of the fact that the Value field of the Registry
table uses the MSI data type Formatted. MSI database fields
that use the Formatted data type will expand expressions
of the form [PropertyName] into the value of the specified
property at run t ime. For example, to write the account
name of the user running the installat ion into the registry,
you can create a value with data “[LogonUser]”.

To read back registry data during a later installat ion, you
can populate the AppSearch and RegLocator tables, or use

the InstallShield System Search Wizard to populate the
tables for you. Of course, you can instead create a custom
act ion script or DLL to read the registry data for you. (You
can attach the condit ion “Not Installed” to an act ion you
want to run only for a first-t ime installat ion, and use the
condit ion “Installed” for an act ion that should run only
during a maintenance operat ion.)

The exceptions mentioned earlier are the values of the MSI
propert ies USERNAME, COMPANYNAME, and ProductID,
which are available using the MsiGetUserInfo API funct ion;
and the values of ProductVersion and most Programs and
Features sett ings, available with the MsiGetProductInfo
API funct ion.

A common requirement is to save the value of the
main product installat ion directory, often stored in the
INSTALLDIR property, so that the value is available during a
maintenance or update operat ion. The value of the built-in
property ARPINSTALLLOCATION is automatically written
to the target system’s registry, and is available using the
MsiGetProductInfo funct ion. To set ARPINSTALLLOCATION
to the value of INSTALLDIR, you can create a set-a-property
(Type-51) custom act ion with source ARPINSTALLLOCATION
and target [INSTALLDIR], scheduling it in the Execute
sequence after the standard CostFinalize act ion. If you use
InstallShield to create a project, such a custom act ion (called
SetARPINSTALLLOCATION) is automatically included.

Organizing the Update Project
This sect ion describes techniques involved in authoring
common update scenarios. Again, these guidelines are
the most relevant for minor upgrades: the uninstall-then-
install behavior of a major update reduces your exposure
to problems with the design of the original project. If your
earlier MSI project has already been deployed, you can
often create a major upgrade package to improve the setup
design for future updates.

Deciding Which Type of Update Package to Use
Previously, some of the differences between how minor
upgrades and major upgrades are packaged and deployed
were described. There are some situat ions in which a minor
upgrade cannot be used, and a major upgrade is required.
Some of the cases in which a major upgrade is required are
the following:

	 •	�If the file name of the MSI database has changed,
a major upgrade is required. Therefore, if your
organization’s build pract ices include using the
product version in the MSI file name (as in SampleApp-
1.2.3.msi), you will need to use major upgrades to
update your product.

	 •	�If a component has been removed from an exist ing
feature, or if a component code of an exist ing
component has changed, a major upgrade is required.
(Note that this rule applies equally to components in
merge modules.)

Designing an Update-Friendly MSI Installat ion

Flexera Software: InstallShield White Paper Series6

	 •	�Similarly, if an exist ing feature has been moved
to become a subfeature of another feature, or if a
subfeature has been removed from an exist ing feature,
a major upgrade is required.

Even if you intend to package your update project as a
patch, you must usually create a minor or major upgrade
package before creat ing the patch. (An exception is the
InstallShield QuickPatch project type.) Recall that an update
packaged as a full MSI package can behave as a first-t ime
installat ion if a part icular user does not have an earlier
version of your product installed, while a patch package
cannot.

If you intend to use patches, it is recommended you create
minor upgrades.

Tip 5: New subfeatures should be marked as “required” and
“follow parent”.
A minor upgrade can contain new components in an
exist ing feature. (Very early MSI versions required new
components in an update package to be placed in new
features, and also required special command-line handling.)

A minor upgrade generally should not take a new top-level
feature. However, new subfeatures of exist ing features are
allowed, and should be given the “required” and “follow
parent” flags in the Attributes field of the Feature table. In
the InstallShield Setup Design view or Features view, set the
subfeature’s Required property to Yes, and set the Remote
Installat ion property to Favor Parent.

The user interface of a minor upgrade does not usually
show the feature tree. Maintenance mode for the updated
installat ion will typically expose the feature tree (in a
“Modify” option), and for that reason you might want to
mark the new subfeature as hidden. To mark a feature as
hidden in the Feature table, enter 0 in the feature’s Display
field; in InstallShield, set the feature’s Display property to
Not Visible.

Tip 6: If your minor upgrade removes data (files, registry
sett ings, and so forth) from a component, populate the
corresponding “Remove” data.
In your minor-upgrade project, removing a file that existed
in the earlier product version will not cause the file to be
removed when the update is applied. To address this,
Windows Installer provides a RemoveFile table, in which
you can specify files to remove during installat ion or
uninstallat ion of the current MSI package.

The fields contained in a RemoveFile record are the
following:

	 •	� FileKey: a unique, arbitrary primary key for this record
(such as “Remove1”).

	 •	� Component_: reference to a component in the current
database; the removal will take place during the
installat ion or uninstallat ion of this component.

	 •	� FileName: the name of the file to remove; you can use
wildcard expressions to remove mult iple files.

	 •	� DirProperty: a property or directory ident ifier containing
the path to the file(s).

	 •	� InstallMode: numeric flag indicat ing when to remove
the file(s). Valid values are 1 to remove files when
component is installed; 2 to remove files when
component is uninstalled; 3 to remove files when
component is installed or uninstalled.

In InstallShield, the RemoveFile table is exposed in the Direct
Editor view, in the Addit ional Tools view group. To create
a record, click the New button or press Insert, and then
populate the fields with the desired data.

Similarly, if you remove registry data from a component
in a minor upgrade, you should create a record in the
RemoveRegistry table. Records in the RemoveRegistry table
describe the registry key and value to remove when the
associated component is installed. Unlike the RemoveFile
table, the RemoveRegistry table does not accept an option
to remove the specified registry data when the associated
component is uninstalled. Instead, you can author a registry
value with the “uninstall ent ire key” flag: if your component
contains a registry value with a hyphen (-) in the Name field
and an empty Value field, the specified registry key and
all its contents will be removed when the component
is removed.

For other types of data, there is usually either an
uninstallat ion flag available in the MSI table or a
corresponding uninstallat ion table. To remove INI data, for
example, there is a RemoveIniFile table; for environment-
variable data, there is a corresponding uninstallat ion flag;
and so forth.

NOTE: This t ip applies only if the component with removed
data is private to your product. For components shared with
other products, you should change the component code
when removing resources. Furthermore, as described above,
changing an exist ing component’s component code requires
a major upgrade. For more informat ion, see the Windows
Installer help library pages “Changing the Component Code”
and “What happens if the component rules are broken?”

InstallShield validates your update packages for appropriate
“Remove” data.

Designing an Update-Friendly MSI Installat ion

7Flexera Software: InstallShield White Paper Series

Tip 7: Change the MSI product version for each new release.
There are some numeric codes that need to be changed
in your project for different types of updates. One of
these is the MSI product version, stored in the required
ProductVersion property. Especially if you intend to package
your update as a patch, you will generally want to be able
to dist inguish an updated version of your package from the
original version.

In addit ion, InstallShield automatically creates a
major-upgrade item that prevents an earlier version of
your product from being installed over a later version.
Changing the ProductVersion each release enables MSI to
perform this test.

Tip 8: When building your update package, use Patch
Optimization in your build sett ings.
To make the smallest possible patches, file keys in the
File table should be ident ical in the earlier and later MSI
databases. The patch-creat ion process uses the File-table
keys to determine if two files are the “same” file. (The actual
file names cannot reliably be used, since a package might
contain more than one file with the same name, installed
under different condit ions.)

To use patch optimization in InstallShield, in the last panel
of the Release Wizard you can browse for the earlier
version of your MSI database.

During the build, InstallShield will ensure the File-table keys
are ident ical for ident ical files.

Tip 9: When generating a patch for a compressed
installat ion, use an administrat ive image.
The patch-generat ion process requires uncompressed
images of your older and newer installat ion packages.
If your original installat ion package was built with files
compressed, you should generate an uncompressed image
by running an administrat ive installat ion. An administrat ive
installat ion is not a true installat ion, in the sense that it does
not register any product data on the target system, create

shortcuts, write registry data, or register COM servers or
file extensions. Instead, an administrat ive installat ion simply
creates an uncompressed image of an installat ion.

To run an administrat ive installat ion, you can launch
the MSI engine executable with the /a switch, as in the
following:
msiexec /a ProductName.msi

If your project uses a Setup.exe setup launcher, you
can typically also use this command to create an
administrat ive image:
setup /a

The main idea is that you should not create a separate
uncompressed build configurat ion for the sake of patch
generat ion: doing so will compromise the integrity of
the File and Media tables between the versions of
your installat ion. Instead, you should always create
an administrat ive image if you need an uncompressed
package. InstallShield will automatically create an
administrat ive image for you when you add your installat ion
to a patch configurat ion in the Patch Design view.

Tip 10: When generating a patch, both versions should have
the same media layout.
When generat ing a patch, the earlier and latest versions of
your project should both have been built to use compressed
files, or both to use uncompressed files. In the case of
compressed packages, you should use administrat ive
images to generate the patch, as described in the
previous t ip.

To understand why this is important, consider a situat ion
where the earlier package was installed using a compressed
image. If you create a patch for this installat ion where the
latest version is uncompressed, the patch will transform the
cached MSI database on the target system to use references
to uncompressed source files. If the patched installat ion
requires the original installat ion source (for example,
because an installed file was accidentally deleted),
Windows Installer will make a request for an uncompressed
file; and because the original source was compressed, MSI
will be unable to find the file to repair it.

Even worse, there are some situat ions where having
mismatched media layouts can cause MSI to delete a good
file in an update situat ion.

For compressed images that span mult iple cabinet (CAB)
files, then, you should ensure exist ing files are located in the
same CAB file for both the earlier and latest versions. New
files can be placed in a new CAB file.

For uncompressed images, files must reside in the same
location in the directory structures for the earlier and
later versions.

Designing an Update-Friendly MSI Installat ion

Flexera Software: InstallShield White Paper Series8

Tip 11: For a patch, do not set REINSTALL=ALL.
The REINSTALL property, which should be set during the
applicat ion of a minor upgrade, can contain a comma-
separated list of features to be reinstalled or the special
value ALL. However, using the value ALL can cause
unwanted prompts for the installat ion source.

Moreover, the special value ALL reinstalls only those features
already installed by an earlier version of the product.
During a first-t ime installat ion, no features will have been
installed, and therefore no features will be installed.
For a minor upgrade, if you have a batch file or setup
launcher that sets REINSTALL to ALL, you should include a
custom act ion to clear the REINSTALL property for a first-t ime
installat ion. Another option, handled by InstallShield, is to
create an Update.exe setup launcher that tests whether an
earlier version of the product has been installed, and sets
REINSTALL only when appropriate.

Tip 12: Updates can contain new dialog boxes and
custom act ions.
If you need to handle exist ing or new data in a special way
during an upgrade installat ion, you can insert new act ions
and dialog boxes in an update package. The following
sect ion describes condit ions you can use if you want to run
an act ion only during an upgrade.

Propert ies Used in Updates and Patches
In addit ion to being able to update project files, registry
sett ings, and other data in an update package, you can
modify and add dialog boxes and custom act ions used in
an update package. An update package will run using the
sequences defined in the new package.

In some cases, of course, you will want to show certain
dialog boxes or perform certain act ions only if an
update is taking place, and not if the package is a first-
t ime installat ion. This sect ion describes the various MSI
propert ies used to determine the type of installat ion taking
place. A standard example is the user interface displayed
by an installat ion. By default, a first-t ime installat ion
displays one sequence of dialog boxes (start ing with
InstallWelcome); a maintenance mode installat ion displays
another (start ing with MaintenanceWelcome); a minor
upgrade displays another (SetupResume); and a patch
install displays yet another (PatchWelcome).

In the raw MSI database tables (for example, using the
Direct Editor view), you can view the “entry point” of a
part icular series of dialog boxes in the InstallUISequence
table. In InstallShield, you can use the Custom Actions and
Sequences view, inside the Behavior and Logic view group.

In the InstallUISequence table, only the first dialog box in
a series is explicit ly listed; subsequent dialog boxes do not
appear in the sequence tables, but are instead handled
by control events attached to the Back and Next buttons
on each dialog box. The Sequences view combines the

information represented by the InstallUISequence table and
the NewDialog control events attached to Next and Back
buttons to display dialog boxes in a tree view.

The key concept is that the same sequence table is used
for first-t ime installat ions, maintenance mode installat ions,
uninstallat ion, and so forth: there is no “Uninstall”
sequence. The difference when running these different
installat ion modes is that various MSI propert ies have
different values, which indicate what type of installat ion is
appropriate.

In the InstallUISequence table or the Custom Actions and
Sequences view, you can review the condit ions attached to
the entry point of each series of dialog boxes:

	 •	�InstallWelcome: Not Installed And (Not PATCH Or
IS_MAJOR_UPGRADE).

	 •	�MaintenanceWelcome: Installed And Not RESUME And
Not Preselected And Not PATCH.

	 •	�SetupResume: Installed And (RESUME Or Preselected)
And Not PATCH.

	 •	�PatchWelcome: PATCH And Not IS_MAJOR_UPGRADE.

The propert ies involved are:

	 •	 �Installed: set if a product exists on a target system;
thus the condit ion “Not Installed” succeeds for a
first-t ime installat ion.

	 •	 �PATCH: set if the current installat ion is packaged as
a patch.

	 •	 �RESUME: set if a suspended installat ion is being
resumed, as an installer launched after a reboot caused
by the ForceReboot act ion.

	 •	 �Preselected: set if REINSTALL, ADDLOCAL, or a related
property has been set at the command line, indicat ing
a minor upgrade.

	 •	�IS_MAJOR_UPGRADE: set by InstallShield for a major
upgrade (this is not a standard MSI property).

TIP: There are some addit ional propert ies you can use to
determine if a major upgrade is taking place. Moreover,
the Windows Installer API funct ion MsiGetProductInfo (and
the equivalent MSI Automation method ProductInfo) can
programmatically return information about an installed
version of your product, such as its version information,
install locat ion, and Programs and Features sett ings.

File-Overwrite Rules
A widespread problem with legacy, non-MSI installat ion
programs was that poorly written installers would
indiscriminately overwrite exist ing files on a target system; if
an installer replaced a newer version of a file with an older
one, exist ing applicat ions on the target system could fail.
To address this problem, Windows Installer enforces strict
file-overwrite rules, based on the relat ionship between the
version or modification-date information of the file in the
installer and the file on the target system.

Designing an Update-Friendly MSI Installat ion

9Flexera Software: InstallShield White Paper Series

In addit ion to the file-overwrite rules described here, keep
in mind that the key file of a component is tested when
determining whether to reinstall a component. The simplest
file-overwrite rule is that a file with a newer version will
replace an exist ing file with an older version. At installat ion
t ime, MSI compares the version information in the
appropriate File table record to the version of the exist ing
file; if your file has the greater version number, it will be
installed. (A special case is that a versioned file will always
replace an unversioned file. Moreover, if the versions of
the two files are equivalent, MSI performs an addit ional
comparison based on the languages supported by each
copy of the file, installing or preserving the file that supports
more languages.)

The file-overwrite rules for unversioned files are somewhat
more complicated. By default, MSI will not overwrite an
unversioned file that has been modified since installat ion;
that is, a file whose creat ion and modification t imestamps
are different.

In addit ion, to prevent unnecessary file-copy operations,
Windows Installer will test file hashes, if present, for
unversioned files. A file hash is a shorthand numeric
representation of a file’s contents; if two files’ hash values are
identical, the files’ contents are identical. If an unversioned
file in an installer has the same hash value as a file on the
target system, MSI will not attempt to transfer the file. This
behavior is especially useful for patches, where it limits
unnecessary prompts for the original installat ion source.

By default, InstallShield computes file hashes for unversioned
files, populat ing the MsiFileHash table of the MSI database.
If you are populat ing the MsiFileHash table by hand, you
will use the MsiGetFileHash API funct ion, or the FileHash
method of the MSI Automation interface, to compute the
values to enter in your project’s MsiFileHash records.

TIP: Another special case involves the relat ionship between
files called companion files. Companion files are files
that should be installed together: in a companion-file
relat ionship, one file is called the parent, and the other
is called the child, and the child is installed whenever the
parent is installed. The way you set up the companion-file
relat ionship is to enter, in the Version field of the child’s File-
table record, the file key of the parent file. In InstallShield,
you can set up a companion file relat ionship by right-
clicking the child’s file icon in one of the file views, select ing
Propert ies, and entering the primary key of the parent’s File
record. Note that the child of a companion-file relat ionship
cannot be the key file of its component.

Changing File-Overwrite Behavior with REINSTALLMODE
The rules described above are the default file-overwrite
rules, which apply when the property REINSTALLMODE uses
the “o” sett ing to install over older files on the target system.
(Recall that the default value of REINSTALLMODE is “omus”.)
To change this behavior, you can replace the “o” option
with one of the following values:

	 •	�p: reinstall only if there is no equivalent file on the
target system.

	 •	�e: reinstall if the file is missing or of an older or
equal version.

	 •	 �d: reinstall if file is missing or different.
	 •	 �a: reinstall all files, regardless of version.

Keep in mind, however, that the sett ing for
REINSTALLMODE applies to all the features being installed,
and cannot be set for an individual feature. In addit ion,
sett ing REINSTALLMODE to include “a” will likely cause
prompts for the original installat ion source during the
applicat ion of a patch.

Summary
In this white paper, you have learned some guidelines for
creat ing init ial and updated versions of your installat ion
project, as well as information about the file-overwrite
behavior that affects the effect iveness of update
installat ions. You have also read about how InstallShield
can help simplify and streamline the installat ion and update
creat ion process.

How Flexera Software Professional Services Can Help
There are many considerat ions – technical, operat ional, and
commercial – when designing a reliable yet flexible update/
patching strategy. Flexera Software can assist you every
step of the way as the world leader in MSI technology
with expert ise from our background as the developers of
InstallShield. Find out more at
www.flexerasoftware.com/services/consulting/software-
installations.htm.

Begin a Free Trial of InstallShield
You can download a free trial version of InstallShield
from the Flexera Software Web site at:
www.flexerasoftware.com/installshield/eval

Want to learn more best pract ices for building quality
installat ions? Join an InstallShield training class – visit
www.flexerasoftware.com/training for available classes.

www.flexerasoftware.com/services/consulting/software-installations.htm
www.flexerasoftware.com/services/consulting/software-installations.htm
http://www.flexerasoftware.com/installshield/eval
http://www.flexerasoftware.com/services/education.htm

W
H

IT
E

 P
A

P
E

R

Flexera Software LLC
(Global Headquarters):
+1 800-809-5659

United Kingdom (Europe,
Middle East Headquarters):
+44 870-871-1111
+44 870-873-6300

Australia (Asia,
Pacific Headquarters):
+61 3-9895-2000

Beijing, China:
+86 10-6510-1566

For more office locations visit:
www.flexerasoftware.com

Copyright © 2013 Flexera Software LLC. All other brand and product names ment ioned herein may be the trademarks and registered trademarks of their respect ive owners.
 													 IS_WP_Patching_Oct13

http://www.flexerasoftware.com

